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Three structural properties reflecting the synchronizability of complex networks
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During the process of adding links, we find that the synchronizability of the classical Barabasi-Albert (BA)
scale-free or Watts-Strogatz (WS) small-world networks can be statistically quantified by three essentially
structural quantities of these networks, i.e., the eccentricity, variance of the degree distribution, and clustering
coefficients. The results indicate that both the eccentricity and clustering coefficient are positively linearly
correlated with synchronizability, while the variance is negatively linearly correlated. Moreover, the efficiency
of some particular strategies of adding links to change the synchronizability is also investigated. This infor-
mation can be used to guide us to design corresponding strategies of structure-evolving processes to manipulate

the synchronizability of a given network.
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Two typical and important networks are the small-world
(SW) networks [1,2] and scale-free (SF) networks [3]. Many
more real-world networks [4-6], including both artificial and
natural systems, seem to hold either the SW property or the
SF property or both of them.

In recent years, the research on synchronizability for com-
plex networks has become an important and interesting topic
[7-10] (and many references cited therein). These study re-
sults imply that the structural properties of a network have a
close relationship with its synchronizability; but some con-
clusions from them seem somewhat inconsistent. For ex-
ample, for better synchronization, a small value of the maxi-
mal betweenness centrality is required [8], rather than short
characteristic path length or large heterogeneity of the degree
distribution. While in [11] the authors strongly suggested that
the maximal betweenness may not give a comprehensive de-
scription of network synchronizability. A more interesting
investigation [12] has been given to show that two simple
graphs, which have the same structural quantities such as
average distance, degree distribution, and node betweenness
centrality, have very different synchronizabilities. From these
research results, we can see that it must be unreasonable to
study the synchronizability of a given network just by inves-
tigating its some structural quantities.

In spite of this, however, we will show that the synchro-
nizability of a given class of network, during a structure-
evolving process of adding a fraction of new links, can be
statistically quantified by their some essentially structural
quantities. Then, some essential and important problems ap-
pear; for example, (i) which structural properties play a cru-
cial role in the synchronizability of a given class of network
during such structure-evolving process?, (i) to what extent
do these crucial structure quantities affect synchronizability
during such process?, and (iii) how to design an effective
strategy for such process such that the synchronizability can
be improved or weakened? In this Brief Report, by using the
important classes of Barabési-Albert (BA) scale-free and
Watts-Strogatz (WS) small-world network models, we ad-
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dress these problems with slight structure transformations
performed by adding a fraction of links to these networks.

First, we present the general framework of synchroniz-
ability established in [13], which we follow for the sake of
simplicity. The state equation of considered network has the
following form:

N
%0 = F(x(0) + ¢ 2 ayH(x;(0), i=1,2,...,N, (1)
j=1

where the function F(-) describes the local dynamics of
nodes and H(-) represents the inner-coupling rule. The con-
stant ¢>0 denotes the overall strength of coupling and
A=(a;) e RNV with zero-sum rows shows the coupling
configuration of the network. If nodes i and j are connected
then a;j=a;;=—1; otherwise a;;=a;=0. If node i is connected
directly to k; other nodes then a;=k;. The linear stability of
the synchronized state {x,(r)=s(¢),Vi} is determined by
N-1 variational equations in the transverse directions, which
have the uniform expression 7=[DF(s)+XDH(s)]n obtained
by a diagonalization process. Let 0=N;<A,=-:-=\y be
the eigenvalues of A. The synchronizability can be quantified
by the eigenratio R=\y/\, [13]: the smaller the eigenratio is
the stronger synchronizability of the network (1).

In the following, we adopt a statistical method to discover
the essential forces affecting the synchronizability caused by
some crucial and typical structural quantities in the structure-
evolving process performed by adding links. These quantities
are selected primarily by the following scheme. First, since
there are so many quantities to describe properties of a net-
work, we only consider some typical quantities such as the
average path length, clustering coefficient, maximal be-
tweenness centrality, eccentricity, variance of the degree dis-
tribution, and so on. Second, we view those quantities among
which there exist strongly positive correlations in the process
of adding links as a class and choose one from them ran-
domly. Finally, these selected quantities should change
smoothly in the process of completely random addition of
links even for relatively small times of realization. Under
this scheme and a large amount of simulations, we pick out
the eccentricity (E), variance of the degree distribution (V),
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FIG. 1. (Color online) The approximately linear relations be-
tween R(k) and X;(k), i=1,2,3.

and clustering coefficient (C) as the primary quantities for
further consideration. Certainly, with the above rough proce-
dure the selection of such quantities is not unique; but, we
will show that with only these three quantities the synchro-
nizability can be well quantified with just a fraction of new
links added.

The eccentricity of a network is defined as E
=(=Y,E)/N, where Ei=max]i1’j¢i{dii} is the eccentricity of
the node i and d;; is the length of a shortest path between
nodes i and j. The variance V=(N"'Sk*—((N"'Sk;)?) can
quantify the heterogeneity of the degree distribution. The
clustering coefficient is usually defined [14] as C
=(2,C,)/N, where C;=2¢;/[k;(k;—1)], and e, is the number of
links that exist between the k; neighbors of node i. For sim-
plicity, these three structural quantities just mentioned above
are denoted in turn by X;(k)eR, i=1,2,3, and %k
=1,2,...,M that are random variables because of the rando-
micity in the following strategies of adding links, where M is
the maximal number of added links. By plentiful simulations
with adequately small M with respect to the number N, of
vacant links (i.e., the ratio M/N,<<1), we surprisingly find
that there exist strongly linear correlations between R and X;
in some typical strategies of adding links, i.e., R(k) ~ X,(k).
The N, will be calculated later. Since some well-known
analysis tools such as the perturbation of coupling matrices,
graph operations, and so on do not easily deal with this com-
plicated case by noting the approximately linear relations
between R(k) and X;(k), this induces us to apply the linear
regression analysis to seek the quantitative relations between
them.

All the following simulations are based on 100 indepen-
dent realizations. With N=500 and M =50, Fig. 1 shows the
mean changes of R and X; in the process achieved by the
completely random addition of links (denote completely ran-
dom (CR) strategy) into the initial BA network models (see
[14]). These initial BA networks (M=0) start with my=4
nodes and the number m=3 of links introduced by a new
node at every time step. Here, we have szCjzv—mN be-
cause about mN links already exist in the initial BA net-
works. With N=500 and M =50, we get the ratio M/N,=5
X1074<1.

By applying the ridge regression [15,16] and still using R
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FIG. 2. (Color online) The differences between actual eigenratio
R(k) with CR strategy and prediction eigenratio R(k).

and X; to denote these quantities after centering and scaling
for comparability, we can obtain the regression equation

R(k) =0.199 8X,(k) - 0.208 2X,(k) + 0.266 7X;(k). (2)

By other 100 independent realizations, we can always get
{Ekle[ﬁ(k)—R(k)]z}/M< the variance of R; here R is the
prediction generated by the model (2) and R is the actual
value. Figure 2 shows the differences between the actual
eigenratio and prediction eigenratio that is calculated by us-
ing the regression (2), which displays an effective fitting. All
the following constructed regression models are checked by
this method for their validity and we omit the test processes
for simplicity. From the coefficients on X; in Eq. (2), more
compactly denoted by a weight vector w=(0.199 8,
—0.208 2,0.266 7), we can see that both the eccentricity and
clustering coefficients play a positive correlation in synchro-
nizability, while the variance plays a negative correlation.
Here, we must point out that the regression model (2) is valid
only for sufficiently small ratio M/N,. For instance, with
M =500 the approximately linear relations between R and X;
are destroyed (see from Fig. 3). So, the linear regression
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FIG. 3. (Color online) The changes of R(k) and X;(k), i
=1,2,3. The thin lines are all straight lines.

067201-2



BRIEF REPORTS

| DDDDDDDDDDD’
opgooBetd
55F DDDDD N
[ S

L ¥ |

50 * ++++++++++++
* T
R 45; * 1
* %
*
*
40r * g ]
%**
52 * % %

35 Se L, %**%*%

515 ° * %
300 2 4 6 1

The number of deleted links

25 L L L L L

0 5 10 15 20 25

k

FIG. 4. (Color online) The changes of eigenratio R under strat-
egies ME (star), SD (plus), LD (square), and SLD (circle) to add
links into BA networks with 6=0.1.

analysis (to seek the quantitative relations between them)
becomes unsuitable.

In order to further verify that the weights on the corre-
sponding quantities do show the strengths of force in syn-
chronizability when new links are added, we design addi-
tional four specific strategies for adding links all different
from the CR strategy. We call the first scheme the maximal
eccentricity (ME) strategy: for each addition, we add a new
link between the node chosen randomly with the maximal
eccentricity and a node selected also randomly with the
maximal distance to it. The second strategy is called the
small degree (SD) strategy: for each addition, add a new link
between two nodes randomly selected from those [ SN] nodes
with relatively small connectivity degrees, whose number is
quantified by the Se(0,0.5). Generally for small &, rela-
tively small M is needed for more effective simulations. The
third one is large degree (LD) strategy: for each addition, add
a new link between two nodes randomly selected from those
[8N] nodes with relatively large degrees. The last strategy
we call the small and large degree (SLD) strategy: for each
addition, add a new link between two nodes, one of which is
chosen from those [ SN] nodes with relatively small degrees
and the other one from those [ SN] nodes with relatively large
degrees. Since any given strategy of adding links can be
viewed as a combination of these five strategies, without loss
of generality we only consider them for simplicity. Figure 4
shows the different change processes of R under these four
strategies, which mean

ME > SD > SLD > LD, 3)

for the same number of links added, where the notation >
represents stronger synchronizability between two strategies.
Under each of the above four strategies, we still observe
similar linear correlations between R and X; as to the case of
CR. By regressions, we can get four regression equations
which are determined by the weights on the structural quan-
tities that have been shown by Table 1.

It is obvious that the CR method of adding links can be
viewed statistically as an integration of various methods of
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TABLE 1. The weights on the three structural quantities.

Strategy X, X, X; Weight"
CR 0.1998 -0.2082 0.2667 w
ME 0.6557 0.483 0.5281 wyq
SD 0.2041 0.242 0.265 Wy
LD -0.1066 0.1324 0.1232 w3
SLD 0.0666 -0.0334 0.1181 Wy

All data after centering and scaling.

adding links to a network. This induces us to consider the
fluctuation of X; caused by the four specific strategies based
on the velocity quantified by the weight in Eq. (2) to see if
that weight can accurately reveal the forces of the three
structural quantities in synchronizability in the process of
adding links. So, it is natural and valid to define Byg
=W1WT, ,BSD=W2WT, ,BLD=W3WT, and IBSLD=W4WT as mea-
sures of the fluctuation based on the above analysis. By
computation, we have Byr=0.1713, Bsp=0.0611, Bip
=-0.016, and B¢ p=0.051 8 that gives

Bwme > Bsp > Bsip > Pips (4)

which is consistent with Eq. (3). Moreover, the global trend
of synchronizability under each of the four strategies can be
estimated by the sign of w,w’. For example, B p>0 and
Bip <0 means an increase in synchronizability under SLD
and a decrease under LD (see Fig. 4). Therefore, we con-
clude that with an adequately small ratio M/N,, the weight
in Eq. (2) can show the forces statistically of the correspond-
ing quantities in synchronizability in the process of adding
links. From this weight, we know that the clustering coeffi-
cient affects the synchronizability most strongly. Certainly,
for all other scale-free networks with arbitrary values of de-
gree decay exponent, the above-obtained results may be
valid. Further analysis in this regard will be considered in the
future.

Next, let us consider the WS small-world networks, where
all the notations have the same meanings as the case for the
above BA scale-free networks. These initial WS networks
(M =0) all include N=500 nodes and are constructed with a
uniform probability p=0.1 for rewiring links [14]. The
change processes of eigenratio R under the specific strategies
are presented in Fig. 5 with M=25 new links added. Simi-
larly, by the linear regression analysis, we can also obtain
five regression models which are determined by the weights
on the three structural quantities presented in Table II. The
weight vector w also implies that both the eccentricity and
clustering coefficients are positively linearly correlated with
synchronizability, while the variance is negatively linearly
correlated. Then from Table II, we get Byg=3.9367, Bsp
=0.324 3, B p=—1.894 6, and B p=-0.116 9 that gives

Bume > Bsp > Bsip > Bip- (5)

On the other hand, from Fig. 5, it is clear to see that
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FIG. 5. (Color online) The changes of eigenratio R under strat-
egies ME (star), SD (plus), LD (square), and SLD (circle) to add
links into WS networks with 6=0.1.

ME > SD > SLD > LD, (6)

which is consistent with the prediction (5). Moreover, the
negative values of ) p and SBg; p definitely indicate the weak-
ening of synchronizability under these two strategies. So for
WS networks, we also conclude that the weight w can reflect
the forces of the corresponding quantities in synchronizabil-
ity in the process of adding links.

From Figs. 4 and 5, we see that the LD strategy weakens
the synchronizability both for BA and WS networks. In view
of this, we conjecture that the synchronizability would be
statistically strengthened if we delete a fraction of links
among nodes with relatively large degrees. Considering the
heterogeneous degree distribution in scale-free network and
the homogeneous degree distribution in small-world net-
work, we only delete 50 existing links in BA networks
(N=500) and five links in WS networks (N=500). This has
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TABLE II. The weights on the three structural quantities.

Strategy X, X, X; Weight"
CR 0.9122 -0.3893 0.7531 w
ME 2.8459 -0.8572 1.3371 wq
SD 0.3654 0.7429 0.3721 Wy
LD —1.1552 0.2142 —1.0057 w3
SLD -0.1162 -0.1164 -0.0746 Wy

All data after centering and scaling.

been verified by the insets of Figs. 4 and 5 based on 100
realizations. This case is consistent with the result from [9].
From Tables I and II, the weight vector w tells us that the ME
strategy may be the most effective method to improve syn-
chronizability for the BA and WS networks with a given
small M, as the eccentricity and the clustering coefficients
are greatly reduced, indicated by the weight w,. But, with the
addition of more new links (larger M), the predominance of
the ME strategy to enhance the synchronizability seems to be
weakened or even eliminated, as compared to other strate-
gies.

With different tuned parameters such as N, 6, and p, we
can get similar results to those obtained above, but only as
the added new links are just a fraction of vacant links, i.e.,
M/N,<< 1. Fortunately, for practical applications, this condi-
tion means that one would like to make a slight change to a
network. Since the addition of links is just one method for
structural transformation, one may apply similar techniques
to consider the various influences of structural properties on
synchronizability by other structural transformations such as
deleting links, adding nodes or deleting nodes, and so on.
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